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4. GENERALISED DERIVATIVES OF FUNCTIONS
4.1. Measuring regularity by integrals. Our usual way to measure regularity so far is through:

Definition 4.1. We define C?(R?) for 6 € R, as a subspace of C1%, where [6] is the integer part of
0, where the [0]-order derivatives are (6 — [0]) Hélder-continuous. It is endowed with the norm

0“u(x) — 0%u
lullco == S 10%ull iy + > sup |0%u(x) ef[e}(yﬂ'
|| <[6] la|=[0] TFYER |z — ]

Exercise 47. Prove that for any 0 € R the space C’(RY) is a Banach space.

The motivation of searching for other spaces is to measure regularity by means of integrals (as
opposed to pointwise as for C* spaces) which is natural for PDEs (energy, entropy in physics, etc.).

Definition 4.2 (First definition of Sobolev spaces). Given for s € N and p € [1,+00), we define
the Sobolev space W*P(R?) on R?, as a subspace of LP(R?), by building the completion of C2°(R?)
endowed with the norm ||glyy..oma)y == (3|0 <s ||8§‘g||ip(Rd))% within LP(R?). It means W*P(R?) =
Cgo(Rd)H.”Ws’p(“gd) C LP(R?) is the closure of C°(RY) within LP(R?) for the norm |-|ly..gay. We
write H*(RY) := W*2(R%) in the case p = 2.

Exercise 48. Given p € [1,+00) prove that W*P(R?) is a Banach space, and C°(R?) is dense in it.

Exercise 49. In the case p = 2 we can give two other definitions: (1) g € L*(R%) belongs to H*(R%)
iff there is a constant C' > 0 so that

V‘ﬂ € Cgo(Rd)’ V|O‘| <s, < C”@”LQ(R(Z)

/ 9(2)0 () da
Rd

and the smaller such constant is precisely the H*(R?) norm of g. (2) g € L*(R?) belongs to H*(R?)

iff there is a constant C > 0 so that ([5. [9()[*(1 + [£]*)2 d{)% < C where § is the Fourier-Plancherel
transform of g, and the smaller such constant is precisely the H*(R?) norm of g.

(Remark that this last definition allows to consider non-integer s € Ry, another way to define H®
for non-integer s would be to use the interpolation theory). Check that all the three previous definitions
are equivalent for H*(R?) and provide a Hilbert space, which is dense in L?(R?).

Remark 4.3. For g € WHP(R?) with p € [1,+00), this defines thus a generalised (or weak)
derivative “Vg € LP(RY)” as the limit in LP(R?) of Vg, where g, € C>(RY) approzimates g in
WLP(R?). In general this generalised derivative is not related to g by the standard differential calculus,
that is in a pointwise sense. However (check it by limit) it satisfies the integration by parts as follows:

YV € C*(RY), Vgpdr = —/ gVpda.
R4 R4

This motivates the following more general definition:

Definition 4.4 (Generalised derivative). Consider f locally integrable (i.e. integrable on any compact
set) on R and o € N? multi-index. We say that g is the a-th generalised partial derivative of f, written
g = Dof, if for all p € C°(R?) one has fle fDYpdx = (—1)lel fRd g dx.

Exercise 50. The generalised derivative is unique when it exists. It satisfies Leibniz formula when it
exists. What is the generalised derivative of f(x) = |x| on R?

Definition 4.5 (Second definition of Sobolev spaces). Given s € N and p € [1,+00], we define the
Sobolev space W*P(R?) on R, as a subspace of functions of LP(R?) s.t. for any a € N® with |a| < s
the generalised derivative D®f exists and belongs to LP(RY). It is a Banach space when endowed with
the norm described above when p € [1,+00) and the norm 3, <, D f| Lo (ra) when p = +oo.

Exercise 51. Prove when p € [1,400) that the first and second definition are equivalent.
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4.2. Relating integral and pointwise regularity. Sobolev embedding is the fundamental tool to
relate both ways to measure regularity, and writes

Vs# (d/2)N, seN, s>d/2, 3C >0, |ullgi-arza) < Cllullgs(gray-
We consider here real-valued functions. We start with dimension d = 1.
Proposition 4.6. We have H'(R) C CY/2(R) (i.e. any function of H'(R) has a representant for the

almost everywhere equality equivalence that is in C1/%(R)), and there is C > 0 so that any u € H*(R)
satisfies ||ull cr/z gy < Cllull g (gy- As a consequence: Vs 21, 3C >0, ||ullge-1/2®) < Cllull e g)-

Proof of Proposition 4.6. Consider first u € C°(R):

u(a)? =2 / u(y) (y) dy = u(@)® S llull o ey ]2y

2 2 1/
= ||uHLoo(1R) S (Hu||L2(R) + HuIHLQ(R)> = Hu”Hl(]R)'
Moreover we can estimate variations as

u(z) — u(y)|

y
u(r) —uy) = / u'(2) dz = Ju(z) —u(y)| S lo =y pam) = S S llull g gy
x TFY

which proves that [lullci/2m) < Cllull g1 g)- We then argue by density: consider u € H'(R) and u, €
CP(R) s.t. [|up —ull 1wy — 0 as n — +oo. Then we have [[um — unl|c1/2@r) < Cllum —unll 1w — 0
as m,n — oo, hence (u,,) is Cauchy in C*/2(R), its limit u is also the limit in H' and taking the
limit in [|upllc1/2m) < Cllunll 1wy gives the desired inequality [|ullc1/zr) < Cllull g (g)- O

In higher dimension a simple formulation (sufficient for the study of elliptic regularity) is:

Proposition 4.7. Given d > 1 integer and k,s € N, s > k + d/2, we have C*(R?) C H*(RY), and
there is C' > 0 so that any u € H*(R?) satisfies Hu”ck(Rd) < CHUHH-"‘(Rd)'

The more general result is:

Theorem 4.8. [Sobolev inequalities] Given s € N and p € [1,+00), the Sobolev space W*P(R?)
embeds continuously as follows:

(1) in LY(R?) with q € [p,p/(1 —ps/d)] if s < d/p,
(2) in LY(RY) with any q € [p, +00) if s = d/p,
(8) in C*~4/P(R?) if s > d/p and s — d/p not integer.

The case d = 1 is proved by the previous proposition. In higher dimension, the proof uses the
so-called Sobolev-Gagliardo-Nirenberg inequality.

Proposition 4.9. Assume d > p. We have W'P(R%) C LP"(RY) with p* := pd/(d — p) and there is
C >0 so that
Vue Wl’p(Rd)a llwll o~ (Rd) < C”“”wl,p(Rd)-

Remark 4.10. Observe that it implies W'P(R) C LY(R) for q € [p,p*] by Hélder’s inequality.

Proof of Proposition 4.9. We prove an intermediate result, the Sobolev-Gagliardo-Nirenberg inequal-
ity, that will allow us to use the one-dimensional argument in an “average way” on all variables:

Lemma 4.11. Letn > 2 and f1,..., fn : R*™1 — R belonging to L™ *(R"~1). For any 1 <i < n we
denote &; = (T1,...,%i—1,%i,...,Ty) (removing the i-th component), and f(x) = f1(Z1) - fn(Zn).
Then f is integrable with

Ln—1(Rn—1)"

d
1F 1l gy < TT 11
i=1
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Proof of Lemma 4.11. The case n = 2 is clear: f(x) = f1(z2)f2(z1) and

[on= (L) ([ 1nl).

Induction: Assume n > 2 is proved, then write f = f,411(Zps1)F(2), F(z) = f1(Z1) -« fu(Zn) and

/ £zl < sty 1 G )l oo
X1yeney Ty, ER™
Apply the induction assumption to (z1,...,2z,) — ff/(n*l)(7 Tpa1) - J‘77f/(n71)(-7 Tpt1):

n—1

n 1
Lo Wl S Mol (H 775 o) ()>

i=1

= ||fn+1||Ln(Rn <H|f1 y Tn+1 ||L"(]Rn 1))

=1

Integate finally z,,41:

||fi('axn+1)||Ln Rn—1 dl’nJrl
H ( )

sy < Wntilneny |

Int1 \i=1
1
n n
< ||fn+1||Ln(Rn) H (/ ||fi('7$7L+1)||2"(Rn—1) dl’n+1>
i=1 \YTn+1

d
< ||fn+1||Ln(Rn) H ||fiHLn(]Rn)
i=1

which proves the case n 4+ 1 and concludes the proof. O

Let us go back to the proof of the proposition with the lemma at hand. Consider u € C°(R)
and argue again by density. Define v := |u|'~1u with dv = t|u|'"1du, for any partial derivative 9.
Compute on v for any 1 < < n:

i Qv
<
ac>|_]/_wa

+o00 v
S (x17"'ami717y7xi+17"'7xn)
— 00 6

L

"'axifhyaxiﬁ*la"'axn) dy‘

dy = f,(i’l)

1/(d—1)

It implies by symmetry |v]%/ (4= < H i and one can apply the lemma:

d—1 d—1
d d d
i <
ol gy < ( 1 ()) <| 1A e 1)> <1

=

fdl

ov
axi

I

L'(R%)
which implies

d
el o, <111
where p’ :=p/(p—1). We then choose (in a unique way) ¢ so that the exponents match: td/(d—1) =
p'(t — 1) = p*, which gives the result of the statement. O

ou

|t Ou
5‘:vi LP(Rd

[ 3;&

d
)> < tHUHL,, (t— 1)(Rd)Hvu||LP(Rd)

d
H (uHL,, /(t=1) (R4)

Li®RY) i

Proposition 4.12. Assume d = p. We have W1P(R?) c L%(R) for any q € [p,+00) and for any
such g there is Cy > 0 so that

Yu (S Vvl’p(]Rd)7 Hu||Lq(Rd) S Oq”’LLHWl,p(Rd,).
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Proof of Proposition 4.12. We define v := |u|'~!u with Ov = t|u|'"10u for any partial derivative 0.
We perform the same calculation as above based on the Sobolev-Gagliardo-Nirenberg lemma to get:

o 9ulae ).

[l e, g <

<l e 9y = Dol gy <€ (10l e,

By Holder’s and Mlkowskl s inequality it implies for any ¢ > d:

0 1-6
Tl gy < © (Il B+ 19 ) < 5t g+ € (Rl + 19 e
with 6 := (d — 1)/(t> —td + d — 1) € (0, 1], which concludes the proof. O
Proposition 4.13. Assume d < p. We have WHP(RY) C le%(R) and there is C > 0 so that
P (Rd
Yu S Wl p(R )’ ||7.LH 17, g Rd) = CHUHWl P (R)*

Proof of Proposition 4.13. We first prove the Holder regularity. Consider the cube Q = [—r,7]?. Call
@ the average of v on that cube. Then for any y € Q:

[~ ()| < i / i
<@l /

. d

< |CC; =" (/(1z)y+ZQ;

1
Cr d
<, (Z

=1

y+z(1’y))‘ dzdzx

d:Tc) dz

(z@>5'> dz
Lr(Q)

1
< CI”VU”LP(Q)Tl_d-i_FdI / Y de < CT17%||VU||Lp(Q)-
0

aml

ou
8.’L‘i

(#)

o0x;

This proves the Holder regularity with index 1 — d/p by triangular inequality. Finally the L*°
control is obtained as follows: any point * € R? belongs to a cube @ as above and |u(z)| <

~

|a| + C’rl_d/pHVuHLp(Q) < C'(Iull oy + IVull o (q)) for some constants C,C” > 0. O

Proof of Theorem 4.8. We sketch the argument (a more technical discussion will be given in the
example sheet). Observe that as long as p < d we continue applying the first proposition, which
results into the loss of one derivative and the Lebesgue exponent p increasing by the transformation
©(p) = pd/(d — p) > p. This transformation maps [d/(k + 1),d/k) to [d/k,d/(k — 1)) for k > 2 and
[d/2,d) to [d,+00), with d/(k + 1) mapped to d/k. Therefore given p € [1,+00), (1) the case s < d/p
is proved by the previous propositions, (2) when s > d/p the number of necessary iteration to increase
the integrability exponent beyond d is s so that p > d/s, and we conclude by applying the third
proposition once p > d. g

4.3. Sobolev spaces on an open set.

Definition 4.14. We consider U a bounded and open set of R® with smooth boundary OU. We define
the Sobolev space WP(U) on U, for s € N and p € [1 + 00), as a subset of LP(U) by building the
completion of the vector space C™(RY) (infinitely differentiable) endowed with the norm HgHWs,p(u) =

1 T

(Sraics 10201150y ) - T means WHe(u) = C=@) "W < LP@U). We write HP@U) = W*2(U)
in the case p = 2. We also define the Sobolev space W' (U) as a subset of LP(U) by building the
completion of the vector space C°(RY) (infinitely differentiable with compact support included in U )

endowed with the same norm W*P(U). It means W' (U) = CSO(L{)MWS'D(M) C LP(U). We write
Hi(U) = W (U) in the case p = 2.
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Remark 4.15. As before the space WSP(U) can be defined equivalently through the existence of
generalised derivatives in LP(U) up to order s (including the case p = +o00). A direct definition
(without density) of WP (U) would however require trace conditions.

Exercise 52. Show that H}(U) C H'(U) C L*(U) are Hilbert spaces. Show also that for any u,v €
H}(U) and any first-order partial derivative & we have [, (Ou)vdx = — [, u(dv) dx. (Actually check
that it is enough that only one of the two functions u and v is in H}(U), while the other one can be
merely in H*(U).)

Theorem 4.16. The Sobolev inequalities extend to the case of a smooth bounded domain U, or a
half-plane.

Proof. We only have time to sketch the proof. It is based on the construction of an extension operator
P WhP(U) — WHP(RY) s.t. there is C > 0 s.t. for all f € W'P(U) it holds Pfy = f and
IPfller@ay < Cllflle@ys IPfllwiemay < Cllfllwrrey. This operation is constructed by reflexion
on a half-space, and then using a partition of the unit and mapping local neighborhoods of the
boundary to ones where the boundary is flat. O

4.4. Distributions. The Sobolev spaces are particular subspaces of the larger “universal” space of
distributions or “generalized functions” (theory of L. Schwartz [6, 7]).

Denote D := C2°(R%) and D’ its dual (the space of continuous linear forms). Then D’ is the space of
distributions: locally integrable functions embed into it but also measures like the Dirac distribution
or even derivation of measures like the dipole. And the distributional derivative always makes sense
in this space: <Daf, ()0>('D','D) = (_1)|0‘| <f, Dagﬁ>(D/7'D).

The topology on D is given by an inductive limit: for a sequence of compact sets K; — RY
one can define a topology on D(K;) (smooth functions with support included in K;) by the family
of semi-norms maxp, |[0%¢| for all a € N9 Then the topology on D is the final topology for the
family of inclusions maps D(K;) — D (finest topology making all these maps continuous). This
results in a topology with no countable basis of neighborhoods, however most sequential convergence-
boundedness-compactness results are still true due to the particular structure of this inductive limit.
Moreover one rarely works in such a general space, but rather in smaller subspaces (like Sobolev
spaces) with more structure, and inspired by the equation at hand.

A smaller space of (“tempered”) distribution S’ is given as the dual of S that we have already
encountered. It is endowed with a metric considering the decay at all order of all derivatives. It is a
convenient space of distributions for which the Fourier transform naturally extends by duality.

4.5. The Dirichlet problem for the Poisson equation. One of the oldest PDE problems is the
so-called Dirichlet problem: solving Af = g for f on an open set U with some boundary conditions
f =hon oU. Tt corresponds to the distribution of temperatures at equilibrium under Fourier’s law for
instance. Let us first consider the simplest case, when the prescribed boundary values are assumed to
vanish. Consider a priori some f which satisfies Af(x) = g(x) for any x € U and v € C*(U) N C*(U)
and u(z) =0 on z € .

4.5.1. The key a priori estimate. An important idea in PDE is that of a priori estimates, i.e. searching
a priori necessary estimates valid for smooth solutions, assuming their existence. Hence assume
f € C?*(U)NCLU) is solution with f = 0 on dU. Since we do not prescribe anything on the first
derivative, we need to establish en estimate that does not depend boundary integrals of the gradient
on OU. We multiply the equation by u and integrate to obtain

/u (Af)f da = /M of dz.

Integrating by parts (in view of the boundary conditions”), we get
2
L1952 do == [ 7o <lgllaeqIflimqn:

"Note in particular why C1 (U) is natural.
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In order the relate the LHS and RHS norms of f we prove now the following important result:

Theorem 4.17 (Poincaré’s inequality with Dirichlet conditions). Let U C R? be a open bounded set
such that OU is smooth. Then there exists Cy > 0 (only depending on U) such that the following
holds. Let f € CY(U) such that f =0 on OU, then

/f dx<Cu/|Vf

The inequality extends to f € HE(U) by density.

Proof of Theorem 4.17. Let us first an explicit intuitive proof when f is C'. Consider any point
x = (x1,...,24) in U, and let T; be such that Z = (T1,xa,...,24) € OU. Then write

| 1@ dl‘—/u([Ellaxlf(y’$27--~7$e)dy) do<C [ ot de<C [ 9s@)

which concludes the proof. Note that C' is the length of the greatest interval along the first axis
included in Y. It is clear that this argument remains true under the more general condition that ¢/ is
bounded along one of its direction only. It is also possible to prove this theorem in H{(R?) thanks to
the Sobolev inequality applied for functions in C$°(U). O

Remark 4.18. Note that there are also Poincaré’s inequalities in the whole space, provided the refer-
ence measure 7y has some strong decay (essentially at least exponential) and regularity properties. The
most famous example is the gaussian case y(x) = elel

(/Ré fw) = /Re Fyh(y)d 27(33) dl‘) - <C, (/W IV f(z)]* () dx)l/Q.

The proof is more involved than the one above, see for instance the 2011 exam paper of the course on
kinetic theory for intermediate steps.

Apply Theorem 4.17 to deduce ||f||iz(u) < Cy J, IVf|* dz < Cullgll 2ol f Il 2@y, Which implies
lull 2@y < Cullfllp2@- Then by boostraping the information on the L? norm of f into the first a
priori estimate we obtain [, IVf]? dz < I z2@ollgll 2@y < C’u||g||2LQ(u). Combining the two last

inequalities we can write Hf||?1,1(u) < (C3+ C’Z,,)||g||iz(u). Hence we have proved

Proposition 4.19. Suppose f1, fo € C?(U) N CY(U) satisfy Afy = Afy =g onU with fi = fo =h
on OU. Then f1 = fo.

Proof of Proposition 4.19. The proof follows from the previous estimate applied to the solution f =
f1 — f2 which solves Af = 0 on U with f = 0 on dU: ||f||§{1(u) S H0||2Lz(u) = 0 from our previous
estimate, which shows by continuity that f = 0 everywhere. g

This last proposition solves the problem of uniqueness, but leaves open that of existence and
continuity according to the data, which are the object of the next subsections.

4.6. Existence of weak (generalised) solutions. Weak formulations are an important tool for the
analysis of PDEs that permit the transfer of concepts of linear algebra to solve the problems. In a
weak formulation, an equation is no longer required to hold in the classical sense and has instead weak
solutions only with respect to certain “test functions”. This is equivalent to formulating the problem
to require a solution in the sense of distributions. We introduce a formulation for weak solutions for
the Poisson equation and show how to construct solutions using Riesz representation Theorem. (An
easy generalisation to slightly more general elliptic problems is provided by the Laz-Milgram theorem.)

Let us define the notion of weak solutions. Assume that Af = g with f € C?*(U) N C*(U) and
f =0 on dU then for any ¢ € C?(U) N C*(U) with ¢ = 0 on U we have

(. 0)) :/MVstodx/M(Af)wdx/ugsodx
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where we have denoted by ((-,-)) the bilinear symmetric form obtained by integrating the gradients,
keeping the notation (-,-) for the usual L?(U) scalar product. Observe crucially that the objects in
the LHS and RHS of this statement still make sense as soon as u,v € H (U).

Definition 4.20. We call generalised (or weak) solution a function f € Hg(U) such that for all
pinHg(U) it holds ((f,¢)) = —(g, ). Bquivalently f € H5(U) and (f,Ap) = (g, ) for allp € CZU)
smooth of compact support inU. (This latter equality is the statement that f is a distributional solution

of Af =g.)
Exercise 53. Prove the equivalence in the definition.

Remark 4.21. Note the important idea behind this reformulation: the boundary conditions have been
enforced-encoded in the functional space itself.

We can now state and prove the existence theorem:

Theorem 4.22. Let U C R a bounded open set with smooth boundary, and g € L?>(U). Then there
exists a unique f € Hi(U) weak solution of Af = g, in the sense defined above.

Proof of Theorem 4.22. The proof is a straightfoward application of the Riesz representation Theorem:
we consider the following linear form on H}(U): G(¢) := —(g,¢) which is continuous by Cauchy-
Schwarz and Poincaré’s inequalities: [|G()[| = [[(9: )| < llgllL2@pllell L2y < N9l 22w IVl L2 -
Then the Riesz representation theorem applied in the Hilbert space H} (i) endowed with the equivalent

norm +/{(-,-)), shows that there is a unique f € H}(U) so that G(p) = {(f,¢)) for any ¢ € H}(R?).
which concludes the proof. O

Remark 4.23. Observe moreover that in the previous statement the solution map & : g — f is
continuous from L*(U) to HE(U) since HG”H(%(Z,{)* = SUD|Tg||, 4 =1 G S N9l 2@y and G — f s

an isometry in the representation theorem. In fact prove that & is even continuous from HO_I(Z/{), the
dual of H}(U) for the L2(U) scalar product (-,-), to Hi(U): ||f||H0—1(u) = supy, ):1<f,v>L2(u).

HH(l)(u

Once the solution is built, and assuming that g € C°°, one can prove the regularity by using a
priori estimates and Sobolev embeddings.
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