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4. Generalised derivatives of functions

4.1. Measuring regularity by integrals. Our usual way to measure regularity so far is through:

Definition 4.1. We define C✓(Rd) for ✓ 2 R+ as a subspace of C [✓], where [✓] is the integer part of
✓, where the [✓]-order derivatives are (✓ � [✓]) Hölder-continuous. It is endowed with the norm

kukC✓ :=
X

|↵|[✓]

k@↵ukL1(Rd) +
X

|↵|=[✓]

sup
x 6=y2Rd

|@↵u(x)� @↵u(y)|
|x� y|✓�[✓]

.

Exercise 47. Prove that for any ✓ 2 R+ the space C✓(Rd) is a Banach space.

The motivation of searching for other spaces is to measure regularity by means of integrals (as
opposed to pointwise as for Ck spaces) which is natural for PDEs (energy, entropy in physics, etc.).

Definition 4.2 (First definition of Sobolev spaces). Given for s 2 N and p 2 [1,+1), we define
the Sobolev space W s,p(Rd) on Rd, as a subspace of Lp(Rd), by building the completion of C1

c (Rd)
endowed with the norm kgkW s,p(Rd) := (

P

|↵|s k@↵
x gk

2
Lp(Rd))

1
2 within Lp(Rd). It means W s,p(Rd) =

C1
c (Rd)

k·k
Ws,p(Rd) ⇢ Lp(Rd) is the closure of C1

c (Rd) within Lp(Rd) for the norm k·kW s,p(Rd). We

write Hs(Rd) := W s,2(Rd) in the case p = 2.

Exercise 48. Given p 2 [1,+1) prove that W s,p(Rd) is a Banach space, and C1
c (Rd) is dense in it.

Exercise 49. In the case p = 2 we can give two other definitions: (1) g 2 L2(Rd) belongs to Hs(Rd)
i↵ there is a constant C > 0 so that

8' 2 C1
c (Rd), 8 |↵|  s,

�

�

�

�

ˆ
Rd

g(x)@↵
x'(x) dx

�

�

�

�

 Ck'kL2(Rd)

and the smaller such constant is precisely the Hs(Rd) norm of g. (2) g 2 L2(Rd) belongs to Hs(Rd)

i↵ there is a constant C > 0 so that
�´

Rd |ĝ(⇠)|2(1 + |⇠|2) s
2 d⇠

�

1
2  C where ĝ is the Fourier-Plancherel

transform of g, and the smaller such constant is precisely the Hs(Rd) norm of g.
(Remark that this last definition allows to consider non-integer s 2 R+, another way to define Hs

for non-integer s would be to use the interpolation theory). Check that all the three previous definitions
are equivalent for Hs(Rd) and provide a Hilbert space, which is dense in L2(Rd).

Remark 4.3. For g 2 W 1,p(Rd) with p 2 [1,+1), this defines thus a generalised (or weak)
derivative “rg 2 Lp(Rd)” as the limit in Lp(Rd) of rgn where gn 2 C1

c (Rd) approximates g in
W 1,p(Rd). In general this generalised derivative is not related to g by the standard di↵erential calculus,
that is in a pointwise sense. However (check it by limit) it satisfies the integration by parts as follows:

8' 2 C1
c (Rd),

ˆ
Rd

rg' dx = �
ˆ
Rd

gr' dx.

This motivates the following more general definition:

Definition 4.4 (Generalised derivative). Consider f locally integrable (i.e. integrable on any compact
set) on Rd and ↵ 2 Nd multi-index. We say that g is the ↵-th generalised partial derivative of f , written
g := D↵f , if for all ' 2 C1

c (Rd) one has
´
Rd fD↵' dx = (�1)|↵|

´
Rd g' dx.

Exercise 50. The generalised derivative is unique when it exists. It satisfies Leibniz formula when it
exists. What is the generalised derivative of f(x) = |x| on R?

Definition 4.5 (Second definition of Sobolev spaces). Given s 2 N and p 2 [1,+1], we define the
Sobolev space W s,p(Rd) on Rd, as a subspace of functions of Lp(Rd) s.t. for any ↵ 2 Nd with |↵|  s
the generalised derivative D↵f exists and belongs to Lp(Rd). It is a Banach space when endowed with
the norm described above when p 2 [1,+1) and the norm

P

|↵|s kD↵fkL1(Rd) when p = +1.

Exercise 51. Prove when p 2 [1,+1) that the first and second definition are equivalent.
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4.2. Relating integral and pointwise regularity. Sobolev embedding is the fundamental tool to
relate both ways to measure regularity, and writes

8 s 6= (d/2)N, s 2 N, s > d/2, 9C > 0, kukCs�d/2(Rd)  CkukHs(Rd).

We consider here real-valued functions. We start with dimension d = 1.

Proposition 4.6. We have H1(R) ⇢ C1/2(R) (i.e. any function of H1(R) has a representant for the
almost everywhere equality equivalence that is in C1/2(R)), and there is C > 0 so that any u 2 H1(R)
satisfies kukC1/2(R)  CkukH1(R). As a consequence: 8 s � 1, 9C > 0, kukCs�1/2(R)  CkukHs(R).

Proof of Proposition 4.6. Consider first u 2 C1
c (R):

u(x)2 = 2

ˆ x

�1
u(y)u0(y) dy =) u(x)2 . kukL2(R)ku

0kL2(R)

=) kukL1(R) .
⇣

kuk2L2(R) + ku0k2L2(R)

⌘1/2
= kukH1(R).

Moreover we can estimate variations as

u(x)� u(y) =

ˆ y

x

u0(z) dz =) |u(x)� u(y)| . |x� y|1/2ku0kL2(R) =) sup
x 6=y

|u(x)� u(y)|
|x� y|1/2

. kukH1(R)

which proves that kukC1/2(R)  CkukH1(R). We then argue by density: consider u 2 H1(R) and un 2
C1

c (R) s.t. kun�ukH1(R) ! 0 as n ! +1. Then we have kum�unkC1/2(R)  Ckum�unkH1(R) ! 0

as m,n ! +1, hence (un) is Cauchy in C1/2(R), its limit u is also the limit in H1 and taking the
limit in kunkC1/2(R)  CkunkH1(R) gives the desired inequality kukC1/2(R)  CkukH1(R). ⇤

In higher dimension a simple formulation (su�cient for the study of elliptic regularity) is:

Proposition 4.7. Given d � 1 integer and k, s 2 N, s > k + d/2, we have Ck(Rd) ⇢ Hs(Rd), and
there is C > 0 so that any u 2 Hs(Rd) satisfies kukCk(Rd)  CkukHs(Rd).

The more general result is:

Theorem 4.8. [Sobolev inequalities] Given s 2 N and p 2 [1,+1), the Sobolev space W s,p(Rd)
embeds continuously as follows:
(1) in Lq(Rd) with q 2 [p, p/(1� ps/d)] if s < d/p,
(2) in Lq(Rd) with any q 2 [p,+1) if s = d/p,
(3) in Cs�d/p(Rd) if s > d/p and s� d/p not integer.

The case d = 1 is proved by the previous proposition. In higher dimension, the proof uses the
so-called Sobolev-Gagliardo-Nirenberg inequality.

Proposition 4.9. Assume d > p. We have W 1,p(Rd) ⇢ Lp⇤
(Rd) with p⇤ := pd/(d � p) and there is

C > 0 so that

8u 2 W 1,p(Rd), kukLp⇤ (Rd)  CkukW 1,p(Rd).

Remark 4.10. Observe that it implies W 1,p(R) ⇢ Lq(R) for q 2 [p, p⇤] by Hölder’s inequality.

Proof of Proposition 4.9. We prove an intermediate result, the Sobolev-Gagliardo-Nirenberg inequal-
ity, that will allow us to use the one-dimensional argument in an “average way” on all variables:

Lemma 4.11. Let n � 2 and f1, . . . , fn : Rn�1 ! R belonging to Ln�1(Rn�1). For any 1  i  n we
denote x̃i = (x1, . . . , xi�1, xi, . . . , xn) (removing the i-th component), and f(x) := f1(x̃1) · · · fn(x̃n).
Then f is integrable with

kfkL1(Rn) 
d
Y

i=1

kfikLn�1(Rn�1).
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Proof of Lemma 4.11. The case n = 2 is clear: f(x) = f1(x2)f2(x1) andˆ
x1,x2

|f | =
✓ˆ

x2

|f1|
◆✓ˆ

x1

|f2|
◆

.

Induction: Assume n � 2 is proved, then write f = fn+1(x̃n+1)F (x), F (x) = f1(x̃1) · · · fn(x̃n) andˆ
x1,...,xn2Rn

|f(·, xn+1)|  kfn+1kLn(Rn)kF (·, xn+1)kLn/(n�1)(Rn).

Apply the induction assumption to (x1, . . . , xn) 7! fn/(n�1)
1 (·, xn+1) · · · fn/(n�1)

n (·, xn+1):

ˆ
x1,...xn

|f(·, xn+1)|  kfn+1kLn(Rn)

 

n
Y

i=1

�

�

�

f
n

n�1

i (·, xn+1)
�

�

�

Ln�1(Rn�1)

!

n�1
n

= kfn+1kLn(Rn)

 

n
Y

i=1

kfi(·, xn+1)kLn(Rn�1)

!

.

Integate finally xn+1:

kfkL1(Rn+1)  kfn+1kLn(Rn)

ˆ
xn+1

 

n
Y

i=1

kfi(·, xn+1)kLn(Rn�1)

!

dxn+1

 kfn+1kLn(Rn)

n
Y

i=1

 ˆ
xn+1

kfi(·, xn+1)knLn(Rn�1) dxn+1

!

1
n

 kfn+1kLn(Rn)

d
Y

i=1

kfikLn(Rn)

which proves the case n+ 1 and concludes the proof. ⇤

Let us go back to the proof of the proposition with the lemma at hand. Consider u 2 C1
c (R)

and argue again by density. Define v := |u|t�1u with @v = t|u|t�1@u, for any partial derivative @.
Compute on v for any 1  i  n:

|v(x)| 
�

�

�

�

ˆ xi

�1

@v

@xi
(x1, . . . , xi�1, y, xi+1, . . . , xn) dy

�

�

�

�


ˆ +1

�1

�

�

�

�

@v

@xi
(x1, . . . , xi�1, y, xi+1, . . . , xn)

�

�

�

�

dy =: fi(x̃i).

It implies by symmetry |v|d/(d�1) 
Qd

i=1 f
1/(d�1)
i and one can apply the lemma:

kvk
L

d
d�1 (Rd)


 

d
Y

i=1

�

�

�

�

f
1

d�1

i

�

�

�

�

Ld�1(Rd�1)

!

d�1
d


 

d
Y

i=1

kfik
1

d�1

L1(Rd�1)

!

d�1
d


d
Y

i=1

�

�

�

�

@v

@xi

�

�

�

�

1
d

L1(Rd)

which implies

kukt
L

td
d�1 (Rd)

 t
d
Y

i=1

�

�

�

�

|u|t�1 @u

@xi

�

�

�

�

1
d

L1(Rd)

 t
d
Y

i=1

 

kukt�1
Lp0(t�1)(Rd)

�

�

�

�

@u

@xi

�

�

�

�

Lp(Rd)

!

1
d

 tkukt�1
Lp0(t�1)(Rd)krukLp(Rd)

where p0 := p/(p� 1). We then choose (in a unique way) t so that the exponents match: td/(d� 1) =
p0(t� 1) = p⇤, which gives the result of the statement. ⇤

Proposition 4.12. Assume d = p. We have W 1,p(Rd) ⇢ Lq(R) for any q 2 [p,+1) and for any
such q there is Cq > 0 so that

8u 2 W 1,p(Rd), kukLq(Rd)  CqkukW 1,p(Rd).
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Proof of Proposition 4.12. We define v := |u|t�1u with @v = t|u|t�1@u for any partial derivative @.
We perform the same calculation as above based on the Sobolev-Gagliardo-Nirenberg lemma to get:

kukt
L

td
d�1 (Rd)

 tkukt�1

L
(t�1)d
d�1 (Rd)

krukLd(Rd) =) kuk
L

td
d�1 (Rd)

 C

✓

kuk
L

(t�1)d
d�1 (Rd)

+ krukLd(Rd)

◆

.

By Hölder’s and Mikowski’s inequality it implies for any t � d:

kuk
L

td
d�1 (Rd)

 C

✓

kuk✓Ld(Rd)kuk
1�✓

L
td

d�1 (Rd)
+ krukLd(Rd)

◆

 1

2
kuk

L
td

d�1 (Rd)
+ C 0

⇣

kukLd(Rd) + krukLd(Rd)

⌘

with ✓ := (d� 1)/(t2 � td+ d� 1) 2 (0, 1], which concludes the proof. ⇤

Proposition 4.13. Assume d < p. We have W 1,p(Rd) ⇢ C1� d
p (R) and there is C > 0 so that

8u 2 W 1,p(Rd), kuk
C

1� d
p (Rd)

 CkukW 1,p(Rd).

Proof of Proposition 4.13. We first prove the Hölder regularity. Consider the cube Q = [�r, r]d. Call
ū the average of u on that cube. Then for any y 2 Q:

|ū� u(y)|  1

|Q|

ˆ
Q

|u(x)� u(y)| dx

 r

|Q|

ˆ
Q

ˆ 1

0

d
X

i=1

�

�

�

�

@u

@xi
(y + z(x� y))

�

�

�

�

dz dx

 Cr

|Q|

ˆ 1

0
z�n

 ˆ
(1�z)y+zQ

d
X

i=1

�

�

�

�

@u

@xi
(x̃)

�

�

�

�

dx̃

!

dz

 Cr

|Q|

ˆ 1

0
z�n

 

d
X

i=1

�

�

�

�

@u

@xi

�

�

�

�

Lp(Q)

�(zQ)
1
p0

!

dz

 C 0krukLp(Q)r
1�d+ d

p0

ˆ 1

0
z�d+ d

p0 dz  Cr1�
d
p krukLp(Q).

This proves the Hölder regularity with index 1 � d/p by triangular inequality. Finally the L1

control is obtained as follows: any point x 2 Rd belongs to a cube Q as above and |u(x)| .
|ū|+ Cr1�d/pkrukLp(Q)  C 0(kukLp(Q) + krukLp(Q)) for some constants C,C 0 > 0. ⇤

Proof of Theorem 4.8. We sketch the argument (a more technical discussion will be given in the
example sheet). Observe that as long as p < d we continue applying the first proposition, which
results into the loss of one derivative and the Lebesgue exponent p increasing by the transformation
'(p) = pd/(d � p) > p. This transformation maps [d/(k + 1), d/k) to [d/k, d/(k � 1)) for k � 2 and
[d/2, d) to [d,+1), with d/(k+1) mapped to d/k. Therefore given p 2 [1,+1), (1) the case s  d/p
is proved by the previous propositions, (2) when s > d/p the number of necessary iteration to increase
the integrability exponent beyond d is s so that p > d/s, and we conclude by applying the third
proposition once p > d. ⇤
4.3. Sobolev spaces on an open set.

Definition 4.14. We consider U a bounded and open set of Rd with smooth boundary @U . We define
the Sobolev space W s,p(U) on U , for s 2 N and p 2 [1 + 1), as a subset of Lp(U) by building the
completion of the vector space C1(Rd) (infinitely di↵erentiable) endowed with the norm kgkW s,p(U) :=
⇣

P

|↵|s k@↵
x gk

p
Lp(U)

⌘

1
p

. It means W s,p(U) = C1(U)
k·k

Ws,p(Rd) ⇢ Lp(U). We write Hs(U) = W s,2(U)
in the case p = 2. We also define the Sobolev space W s,p

0 (U) as a subset of Lp(U) by building the
completion of the vector space C1

c (Rd) (infinitely di↵erentiable with compact support included in U)
endowed with the same norm W s,p(U). It means W s,p

0 (U) = C1
c (U)

k·k
Ws,p(Rd) ⇢ Lp(U). We write

Hs
0(U) = W s,2

0 (U) in the case p = 2.
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Remark 4.15. As before the space W s,p(U) can be defined equivalently through the existence of
generalised derivatives in Lp(U) up to order s (including the case p = +1). A direct definition
(without density) of W s,p

0 (U) would however require trace conditions.

Exercise 52. Show that H1
0 (U) ⇢ H1(U) ⇢ L2(U) are Hilbert spaces. Show also that for any u, v 2

H1
0 (U) and any first-order partial derivative @ we have

´
U (@u)v dx = �

´
U u(@v) dx. (Actually check

that it is enough that only one of the two functions u and v is in H1
0 (U), while the other one can be

merely in H1(U).)
Theorem 4.16. The Sobolev inequalities extend to the case of a smooth bounded domain U , or a
half-plane.

Proof. We only have time to sketch the proof. It is based on the construction of an extension operator
P : W 1,p(U) ! W 1,p(Rd) s.t. there is C > 0 s.t. for all f 2 W 1,p(U) it holds Pf|U = f and
kPfkLp(Rd)  CkfkLp(U), kPfkW 1,p(Rd)  CkfkW 1,p(U). This operation is constructed by reflexion
on a half-space, and then using a partition of the unit and mapping local neighborhoods of the
boundary to ones where the boundary is flat. ⇤
4.4. Distributions. The Sobolev spaces are particular subspaces of the larger “universal” space of
distributions or “generalized functions” (theory of L. Schwartz [6, 7]).

Denote D := C1
c (Rd) and D0 its dual (the space of continuous linear forms). Then D0 is the space of

distributions: locally integrable functions embed into it but also measures like the Dirac distribution
or even derivation of measures like the dipole. And the distributional derivative always makes sense
in this space: hD↵f,'i(D0,D) = (�1)|↵|hf,D↵'i(D0,D).

The topology on D is given by an inductive limit : for a sequence of compact sets Ki ! Rd

one can define a topology on D(Ki) (smooth functions with support included in Ki) by the family
of semi-norms maxKi |@↵'| for all ↵ 2 Nd. Then the topology on D is the final topology for the
family of inclusions maps D(Ki) 7! D (finest topology making all these maps continuous). This
results in a topology with no countable basis of neighborhoods, however most sequential convergence-
boundedness-compactness results are still true due to the particular structure of this inductive limit.
Moreover one rarely works in such a general space, but rather in smaller subspaces (like Sobolev
spaces) with more structure, and inspired by the equation at hand.

A smaller space of (“tempered”) distribution S 0 is given as the dual of S that we have already
encountered. It is endowed with a metric considering the decay at all order of all derivatives. It is a
convenient space of distributions for which the Fourier transform naturally extends by duality.

4.5. The Dirichlet problem for the Poisson equation. One of the oldest PDE problems is the
so-called Dirichlet problem: solving �f = g for f on an open set U with some boundary conditions
f = h on @U . It corresponds to the distribution of temperatures at equilibrium under Fourier’s law for
instance. Let us first consider the simplest case, when the prescribed boundary values are assumed to
vanish. Consider a priori some f which satisfies �f(x) = g(x) for any x 2 U and u 2 C2(U)\C1(U)
and u(x) = 0 on x 2 @U .

4.5.1. The key a priori estimate. An important idea in PDE is that of a priori estimates, i.e. searching
a priori necessary estimates valid for smooth solutions, assuming their existence. Hence assume
f 2 C2(U) \ C1(U) is solution with f = 0 on @U . Since we do not prescribe anything on the first
derivative, we need to establish en estimate that does not depend boundary integrals of the gradient
on @U . We multiply the equation by u and integrate to obtainˆ

U
(�f)f dx =

ˆ
U
gf dx.

Integrating by parts (in view of the boundary conditions7), we getˆ
U
|rf |2 dx = �

ˆ
U
gf dx  kgkL2(U)kfkL2(U).

7Note in particular why C1(U) is natural.
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In order the relate the LHS and RHS norms of f we prove now the following important result:

Theorem 4.17 (Poincaré’s inequality with Dirichlet conditions). Let U ⇢ R` be a open bounded set
such that @U is smooth. Then there exists CU > 0 (only depending on U) such that the following
holds. Let f 2 C1(U) such that f = 0 on @U , thenˆ

U
f(x)2 dx  CU

ˆ
U
|rf(x)|2 dx.

The inequality extends to f 2 H1
0 (U) by density.

Proof of Theorem 4.17. Let us first an explicit intuitive proof when f is C1. Consider any point
x = (x1, . . . , xd) in U , and let x̄1 be such that x̄ = (x̄1, x2, . . . , xd) 2 @U . Then writeˆ

U
f(x)2 dx =

ˆ
U

✓ˆ x1

x̄1

@x1f(y, x2, . . . , x`) dy

◆2

dx  C

ˆ
U
|@x1f(x)|

2 dx  C

ˆ
U
|rf(x)|2 dx

which concludes the proof. Note that C is the length of the greatest interval along the first axis
included in U . It is clear that this argument remains true under the more general condition that U is
bounded along one of its direction only. It is also possible to prove this theorem in H1

0 (Rd) thanks to
the Sobolev inequality applied for functions in C1

c (U). ⇤
Remark 4.18. Note that there are also Poincaré’s inequalities in the whole space, provided the refer-
ence measure � has some strong decay (essentially at least exponential) and regularity properties. The

most famous example is the gaussian case �(x) = e�|x|2 :
 ˆ

R`

�

�

�

�

f(x)�
ˆ
R`

f(y)�(y) dy

�

�

�

�

2

�(x) dx

!1/2

 C�

✓ˆ
R`

|rf(x)|2 �(x) dx
◆1/2

.

The proof is more involved than the one above, see for instance the 2011 exam paper of the course on
kinetic theory for intermediate steps.

Apply Theorem 4.17 to deduce kfk2L2(U)  CU
´
U |rf |2 dx  CUkgkL2(U)kfkL2(U), which implies

kukL2(U)  CUkfkL2(U). Then by boostraping the information on the L2 norm of f into the first a

priori estimate we obtain
´
U |rf |2 dx  kfkL2(U)kgkL2(U)  CUkgk2L2(U). Combining the two last

inequalities we can write kfk2H1(U)  (C2
U + CU )kgk2L2(U). Hence we have proved

Proposition 4.19. Suppose f1, f2 2 C2(U) \ C1(U) satisfy �f1 = �f2 = g on U with f1 = f2 = h
on @U . Then f1 = f2.

Proof of Proposition 4.19. The proof follows from the previous estimate applied to the solution f =
f1 � f2 which solves �f = 0 on U with f = 0 on @U : kfk2H1(U) . k0k2L2(U) = 0 from our previous
estimate, which shows by continuity that f = 0 everywhere. ⇤

This last proposition solves the problem of uniqueness, but leaves open that of existence and
continuity according to the data, which are the object of the next subsections.

4.6. Existence of weak (generalised) solutions. Weak formulations are an important tool for the
analysis of PDEs that permit the transfer of concepts of linear algebra to solve the problems. In a
weak formulation, an equation is no longer required to hold in the classical sense and has instead weak
solutions only with respect to certain “test functions”. This is equivalent to formulating the problem
to require a solution in the sense of distributions. We introduce a formulation for weak solutions for
the Poisson equation and show how to construct solutions using Riesz representation Theorem. (An
easy generalisation to slightly more general elliptic problems is provided by the Lax-Milgram theorem.)

Let us define the notion of weak solutions. Assume that �f = g with f 2 C2(U) \ C1(U) and
f = 0 on @U then for any ' 2 C2(U) \ C1(U) with ' = 0 on @U we have

hhf,'ii :=
ˆ
U
rf ·r' dx = �

ˆ
U
(�f)' dx = �

ˆ
U
g' dx
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where we have denoted by hh·, ·ii the bilinear symmetric form obtained by integrating the gradients,
keeping the notation h·, ·i for the usual L2(U) scalar product. Observe crucially that the objects in
the LHS and RHS of this statement still make sense as soon as u, v 2 H1

0 (U).

Definition 4.20. We call generalised (or weak) solution a function f 2 H1
0 (U) such that for all

'inH1
0 (U) it holds hhf,'ii = �hg,'i. Equivalently f 2 H1

0 (U) and hf,�'i = hg,'i for all ' 2 C1
c (U)

smooth of compact support in U . (This latter equality is the statement that f is a distributional solution
of �f = g.)

Exercise 53. Prove the equivalence in the definition.

Remark 4.21. Note the important idea behind this reformulation: the boundary conditions have been
enforced-encoded in the functional space itself.

We can now state and prove the existence theorem:

Theorem 4.22. Let U ⇢ R` a bounded open set with smooth boundary, and g 2 L2(U). Then there
exists a unique f 2 H1

0 (U) weak solution of �f = g, in the sense defined above.

Proof of Theorem 4.22. The proof is a straightfoward application of the Riesz representation Theorem:
we consider the following linear form on H1

0 (U): G(') := �hg,'i which is continuous by Cauchy-
Schwarz and Poincaré’s inequalities: kG(')k = khg,'ik  kgkL2(U)k'kL2(U) . kgkL2(U)kr'kL2(U).

Then the Riesz representation theorem applied in the Hilbert spaceH1
0 (U) endowed with the equivalent

norm
p

hh·, ·ii, shows that there is a unique f 2 H1
0 (U) so that G(') = hhf,'ii for any ' 2 H1

0 (Rd).
which concludes the proof. ⇤
Remark 4.23. Observe moreover that in the previous statement the solution map S : g 7! f is
continuous from L2(U) to H1

0 (U) since kGkH1
0 (U)⇤ = supkr'kL2(U)=1 |G(')| . kgkL2(U) and G 7! f is

an isometry in the representation theorem. In fact prove that S is even continuous from H�1
0 (U), the

dual of H1
0 (U) for the L2(U) scalar product h·, ·i, to H1

0 (U): kfkH�1
0 (U) := supkvk

H1
0(U)=1hf, viL2(U).

Once the solution is built, and assuming that g 2 C1, one can prove the regularity by using a
priori estimates and Sobolev embeddings.
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